Disulfide conformational analysis. The nature of the S-S rotation barrier1 1 Organo-Sulphur Mechanisms-9. For Part 8 see L. Carlsen and J.P. Snyder, J. Org. Chem. 43, 2216 (1978).

Research output: Contribution to journalJournal articleResearchpeer-review

Flemming S. Jørgensen, James P. Snyder

Previous DNMR measurements for a series of bulky disulfides led to the conclusion that rotation about the S-S bond occurs preferentially through the cis transition state. To investigate this conclusion and to study the conformational properties of disulfides in general, we have applied Allinger's force field to a series of dialkyl disulfides generated by homologating dimethyl disulfide to di-t-butyl disulfide. The optimized ground state geometries evidence a gradual increase in the CS-CS dihedral angle from 83 to 114° and indicate that increased substituent bulk drives the disulfide system in the direction of the trans rotational maximum. Explicit calculation of barrier heights yields ΔE(trans) < ΔE(cis) in every case. Furthermore the energy gap, ΔΔE(cis-trans), increases sharply as substituent size grows. This trend results from a rapid rise in the cis barrier and a small drop in the trans one. A rotation-inversion pathway is ruled out and it is concluded that disulfide conformational isomerization occurs by way of the trans transition state. p ]Torsion about the S-C bonds for several t-Bu substituted disulfides is considered. A strongly coupled alkyl-t-Bu rotation is observed computationally in accord with Nelander and Sunner's speculations concerning a "cogwheel effect." ΔG† trends for S-S rotation are discussed in connection with the latter. p ]Finally a ΔH(S-S) parameter is derived. Heats of formation and strain energies for dialkyl disulfides are calculated.

Original languageEnglish
JournalTetrahedron
Volume35
Issue number11
Pages (from-to)1399-1407
Number of pages9
ISSN0040-4020
DOIs
Publication statusPublished - 1 Jan 1979

ID: 218715536