Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. / Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S.

In: Neurochemistry International, Vol. 43, No. 4-5, 14.05.2003, p. 417-24.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Bak, LK, Schousboe, A & Waagepetersen, HS 2003, 'Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools', Neurochemistry International, vol. 43, no. 4-5, pp. 417-24.

APA

Bak, L. K., Schousboe, A., & Waagepetersen, H. S. (2003). Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochemistry International, 43(4-5), 417-24.

Vancouver

Bak LK, Schousboe A, Waagepetersen HS. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochemistry International. 2003 May 14;43(4-5):417-24.

Author

Bak, Lasse K ; Schousboe, Arne ; Waagepetersen, Helle S. / Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. In: Neurochemistry International. 2003 ; Vol. 43, No. 4-5. pp. 417-24.

Bibtex

@article{02877fba8f6c4217950d31959e1bdda8,
title = "Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools",
abstract = "Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.",
keywords = "Animals, Aspartic Acid, Cells, Cultured, Cerebellum, Cytoplasmic Granules, Glutamic Acid, Mice, N-Methylaspartate",
author = "Bak, {Lasse K} and Arne Schousboe and Waagepetersen, {Helle S}",
year = "2003",
month = may,
day = "14",
language = "English",
volume = "43",
pages = "417--24",
journal = "Neurochemistry International",
issn = "0197-0186",
publisher = "Elsevier",
number = "4-5",

}

RIS

TY - JOUR

T1 - Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

AU - Bak, Lasse K

AU - Schousboe, Arne

AU - Waagepetersen, Helle S

PY - 2003/5/14

Y1 - 2003/5/14

N2 - Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.

AB - Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.

KW - Animals

KW - Aspartic Acid

KW - Cells, Cultured

KW - Cerebellum

KW - Cytoplasmic Granules

KW - Glutamic Acid

KW - Mice

KW - N-Methylaspartate

M3 - Journal article

C2 - 12742087

VL - 43

SP - 417

EP - 424

JO - Neurochemistry International

JF - Neurochemistry International

SN - 0197-0186

IS - 4-5

ER -

ID: 152061275