Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

Research output: Contribution to journalJournal articleResearchpeer-review

Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human. The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable and dependent on both Na(+) and Cl(-). Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity at the transporter. Expression analysis by reverse transcription-PCR showed that GAT-2 mRNA is present in human brain, kidney, lung, and testis. The finding of the human GAT-2 demonstrates for the first time that the four plasma membrane GABA transporters identified in several mammalian species are all conserved in human. Furthermore the availability of human GAT-2 enables the use of all human clones of the GABA transporters in drug development programs and functional characterization of novel inhibitors of GABA transport.
Original languageEnglish
JournalJournal of Biological Chemistry
Volume282
Issue number27
Pages (from-to)19331-19341
Number of pages11
ISSN0021-9258
DOIs
Publication statusPublished - 2007

    Research areas

  • Animals, Anisoles, Biological Transport, Active, Cell Line, Transformed, Cell Membrane, Chlorides, Cloning, Molecular, DNA, Complementary, GABA Plasma Membrane Transport Proteins, GABA Uptake Inhibitors, Gene Expression Regulation, Humans, Mice, Nipecotic Acids, Organ Specificity, RNA, Messenger, Rats, Sequence Homology, Amino Acid, Sodium, gamma-Aminobutyric Acid

ID: 2434825