Dynamic conformational changes of acid-sensing ion channels in different desensitizing conditions

Research output: Contribution to journalJournal articleResearchpeer-review

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the β11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.

Original languageEnglish
JournalBiophysical Journal
ISSN0006-3495
DOIs
Publication statusE-pub ahead of print - 2024

Bibliographical note

Publisher Copyright:
© 2024 Biophysical Society

ID: 389553471