Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation. / Wester, Anita; Björkling, Fredrik; Franzyk, Henrik.

In: The Journal of Organic Chemistry, Vol. 86, No. 21, 2021, p. 14371–14380.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Wester, A, Björkling, F & Franzyk, H 2021, 'Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation', The Journal of Organic Chemistry, vol. 86, no. 21, pp. 14371–14380. https://doi.org/10.1021/acs.joc.1c00994

APA

Wester, A., Björkling, F., & Franzyk, H. (2021). Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation. The Journal of Organic Chemistry, 86(21), 14371–14380. https://doi.org/10.1021/acs.joc.1c00994

Vancouver

Wester A, Björkling F, Franzyk H. Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation. The Journal of Organic Chemistry. 2021;86(21):14371–14380. https://doi.org/10.1021/acs.joc.1c00994

Author

Wester, Anita ; Björkling, Fredrik ; Franzyk, Henrik. / Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation. In: The Journal of Organic Chemistry. 2021 ; Vol. 86, No. 21. pp. 14371–14380.

Bibtex

@article{18a47c8ee8784181b17ac4404fd26062,
title = "Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation",
abstract = "Several guanidines and guanidinylated peptides have substantial potential as therapeutics, but efficient guanidinylation reagents are vital for easy access to these compounds. Presently, pyrazole-1-carboxamidine type reagents are commonly used in the transformations of amines into corresponding guanidines. Here, we report a comparative study of the utility of 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine, which was synthesized in two steps and readily upscaled to gram amounts. It exhibited excellent performance in solution-phase reactions, rapidly converting a set of representative aliphatic primary and unhindered secondary amines as well as aniline into the corresponding bis(tert-butoxycarbonyl)-protected guanidines. To enable a direct assessment of the reactivity of guanidinylation reagents, conversions were performed in deuterated solvents (d7-DMF or d8-THF), allowing for continuous analysis of the reaction mixtures by 1H and 13C NMR. Likewise, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved to be a versatile reagent in solid-phase conversions, for example, a resin-bound test peptide (KFFKFFK) was fully guanidinylated in only 2 h by using 2 equivalents of the reagent per free amino group. Also, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved capable of completely guanidinylating more sterically hindered N-terminal residues (e.g., N-methyl amino acids or a peptoid) in resin-bound peptides. Its superior reactivity and stability demonstrated under heating conditions make 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine a valuable guanidinylation reagent both in solution- and solid-phase synthesis.",
author = "Anita Wester and Fredrik Bj{\"o}rkling and Henrik Franzyk",
year = "2021",
doi = "10.1021/acs.joc.1c00994",
language = "English",
volume = "86",
pages = "14371–14380",
journal = "Journal of Organic Chemistry",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "21",

}

RIS

TY - JOUR

T1 - Evaluation of 1H-Triazole-1-[N,N'-Bis(tert-butoxycarbonyl)]carboxamidine in Solution-Phase and On-Resin Guanidinylation

AU - Wester, Anita

AU - Björkling, Fredrik

AU - Franzyk, Henrik

PY - 2021

Y1 - 2021

N2 - Several guanidines and guanidinylated peptides have substantial potential as therapeutics, but efficient guanidinylation reagents are vital for easy access to these compounds. Presently, pyrazole-1-carboxamidine type reagents are commonly used in the transformations of amines into corresponding guanidines. Here, we report a comparative study of the utility of 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine, which was synthesized in two steps and readily upscaled to gram amounts. It exhibited excellent performance in solution-phase reactions, rapidly converting a set of representative aliphatic primary and unhindered secondary amines as well as aniline into the corresponding bis(tert-butoxycarbonyl)-protected guanidines. To enable a direct assessment of the reactivity of guanidinylation reagents, conversions were performed in deuterated solvents (d7-DMF or d8-THF), allowing for continuous analysis of the reaction mixtures by 1H and 13C NMR. Likewise, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved to be a versatile reagent in solid-phase conversions, for example, a resin-bound test peptide (KFFKFFK) was fully guanidinylated in only 2 h by using 2 equivalents of the reagent per free amino group. Also, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved capable of completely guanidinylating more sterically hindered N-terminal residues (e.g., N-methyl amino acids or a peptoid) in resin-bound peptides. Its superior reactivity and stability demonstrated under heating conditions make 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine a valuable guanidinylation reagent both in solution- and solid-phase synthesis.

AB - Several guanidines and guanidinylated peptides have substantial potential as therapeutics, but efficient guanidinylation reagents are vital for easy access to these compounds. Presently, pyrazole-1-carboxamidine type reagents are commonly used in the transformations of amines into corresponding guanidines. Here, we report a comparative study of the utility of 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine, which was synthesized in two steps and readily upscaled to gram amounts. It exhibited excellent performance in solution-phase reactions, rapidly converting a set of representative aliphatic primary and unhindered secondary amines as well as aniline into the corresponding bis(tert-butoxycarbonyl)-protected guanidines. To enable a direct assessment of the reactivity of guanidinylation reagents, conversions were performed in deuterated solvents (d7-DMF or d8-THF), allowing for continuous analysis of the reaction mixtures by 1H and 13C NMR. Likewise, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved to be a versatile reagent in solid-phase conversions, for example, a resin-bound test peptide (KFFKFFK) was fully guanidinylated in only 2 h by using 2 equivalents of the reagent per free amino group. Also, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved capable of completely guanidinylating more sterically hindered N-terminal residues (e.g., N-methyl amino acids or a peptoid) in resin-bound peptides. Its superior reactivity and stability demonstrated under heating conditions make 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine a valuable guanidinylation reagent both in solution- and solid-phase synthesis.

U2 - 10.1021/acs.joc.1c00994

DO - 10.1021/acs.joc.1c00994

M3 - Journal article

C2 - 34661410

VL - 86

SP - 14371

EP - 14380

JO - Journal of Organic Chemistry

JF - Journal of Organic Chemistry

SN - 0022-3263

IS - 21

ER -

ID: 282313302