GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

GABAergic actions on cholinergic laterodorsal tegmental neurons : implications for control of behavioral state. / Kohlmeier, K A; Kristiansen, Uffe.

In: Neuroscience, Vol. 171, No. 3, 15.12.2010, p. 812-29.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Kohlmeier, KA & Kristiansen, U 2010, 'GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state', Neuroscience, vol. 171, no. 3, pp. 812-29. https://doi.org/10.1016/j.neuroscience.2010.09.034

APA

Kohlmeier, K. A., & Kristiansen, U. (2010). GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience, 171(3), 812-29. https://doi.org/10.1016/j.neuroscience.2010.09.034

Vancouver

Kohlmeier KA, Kristiansen U. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience. 2010 Dec 15;171(3):812-29. https://doi.org/10.1016/j.neuroscience.2010.09.034

Author

Kohlmeier, K A ; Kristiansen, Uffe. / GABAergic actions on cholinergic laterodorsal tegmental neurons : implications for control of behavioral state. In: Neuroscience. 2010 ; Vol. 171, No. 3. pp. 812-29.

Bibtex

@article{baaa607cb18843699caa4885ec6d6ffc,
title = "GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state",
abstract = "Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization-induced Ca(2+) were unaltered by prior emptying of intracellular Ca(2+) stores, but were abolished by low extracellular Ca(2+) and pre-application of nifedipine, indicating that activation of GABA(B) receptors inhibits influx of Ca(2+) involving L-type Ca(2+) channels. Presence of GABA(C) receptors is suggested by the induction of inward current by (E)-4- amino-2-butenoic acid (TACA) and its inhibition by 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic (TPMPA), a relatively selective agonist and antagonist, respectively, of GABA(C) receptors. All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.",
author = "Kohlmeier, {K A} and Uffe Kristiansen",
note = "Copyright {\textcopyright} 2010 IBRO. Published by Elsevier Ltd. All rights reserved.",
year = "2010",
month = dec,
day = "15",
doi = "10.1016/j.neuroscience.2010.09.034",
language = "English",
volume = "171",
pages = "812--29",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Pergamon Press",
number = "3",

}

RIS

TY - JOUR

T1 - GABAergic actions on cholinergic laterodorsal tegmental neurons

T2 - implications for control of behavioral state

AU - Kohlmeier, K A

AU - Kristiansen, Uffe

N1 - Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

PY - 2010/12/15

Y1 - 2010/12/15

N2 - Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization-induced Ca(2+) were unaltered by prior emptying of intracellular Ca(2+) stores, but were abolished by low extracellular Ca(2+) and pre-application of nifedipine, indicating that activation of GABA(B) receptors inhibits influx of Ca(2+) involving L-type Ca(2+) channels. Presence of GABA(C) receptors is suggested by the induction of inward current by (E)-4- amino-2-butenoic acid (TACA) and its inhibition by 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic (TPMPA), a relatively selective agonist and antagonist, respectively, of GABA(C) receptors. All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.

AB - Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization-induced Ca(2+) were unaltered by prior emptying of intracellular Ca(2+) stores, but were abolished by low extracellular Ca(2+) and pre-application of nifedipine, indicating that activation of GABA(B) receptors inhibits influx of Ca(2+) involving L-type Ca(2+) channels. Presence of GABA(C) receptors is suggested by the induction of inward current by (E)-4- amino-2-butenoic acid (TACA) and its inhibition by 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic (TPMPA), a relatively selective agonist and antagonist, respectively, of GABA(C) receptors. All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.

U2 - 10.1016/j.neuroscience.2010.09.034

DO - 10.1016/j.neuroscience.2010.09.034

M3 - Journal article

C2 - 20884335

VL - 171

SP - 812

EP - 829

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 3

ER -

ID: 33105488