New Deoxyenhygrolides from Plesiocystis pacifica Provide Insights into Butenolide Core Biosynthesis

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.4 MB, PDF document

Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1–8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C–J (1–8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1–6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.
Original languageEnglish
Article number72
JournalMarine Drugs
Volume20
Issue number1
Number of pages15
ISSN1660-3397
DOIs
Publication statusPublished - 2022
Externally publishedYes

Bibliographical note

This article belongs to the Special Issue Future Directions of Marine Bacterial Natural Products.

ID: 291996920