Protein semisynthesis underscores the role of a conserved lysine in activation and desensitization of acid-sensing ion channels

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Submitted manuscript, 3.2 MB, PDF document

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.

Original languageEnglish
JournalCell Chemical Biology
ISSN2451-9456
DOIs
Publication statusAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

    Research areas

  • acid-sensing ion channels, desensitization, homolysine, ligand-gated ion channels, native chemical ligation, non-canonical amino acids, ornithine, protein semisynthesis, protein trans-splicing, split inteins

ID: 384876528