β-Peptoid Foldamers at Last

Research output: Contribution to journalJournal articleResearchpeer-review

For a long time, peptides were considered unsuitable for drug development due to their inherently poor pharmacokinetic properties and proteolytic susceptibility. However, this paradigm has changed significantly in the past decade with the approval of numerous antibodies and proteins as drugs. In parallel, research in the field of synthetic molecules that are able to mimic or complement folding patterns exhibited by biopolymers, but are not recognized by proteases, have received considerable attention as well. Such entities were coined "foldamers" by Professor Gellman in an Account published in this journal in the late 1990s. Oligomers of N-alkylated 3-aminopropionic acid residues have been called β-peptoids due to their structural similarity to β-peptides and peptoids (N-alkylglycines), respectively. Because bona fide foldamer behavior has been demonstrated for both parent architectures, we wondered if the β-peptoids could serve as a successful addition to the known ensemble of peptidomimetic foldamers. When we entered this field, only the seminal description of libraries of β-peptoid dimers and trimers by Hamper et al. had been published a number of years earlier [ J. Org. Chem. 1998 , 63 , 708 ]. Perhaps somewhat naïvely in retrospect, we envisioned that elongation of chain length combined with introduction of bulky α-chiral side chains would deliver folded structures as reported for the α-peptoid counterparts. Initially, we, and others, were unsucessful in obtaining stable secondary structures of β-peptoid oligomers, and instead, these residues were either incorporated in cyclic structures or in combination with other types of residues to give peptidomimetic constructs with heterogeneous backbones. Amphiphilic architectures with various membrane-targeting activities, such as mimics of antimicrobial peptides or cell-penetrating peptides, have thus been particularly successful. Introduction of β-peptoid residues in histone deacetylase inhibitors mimicking nonribosomal cyclotetrapeptides have also been reported. In the present Account, we will sketch the scientific journey that ultimately delivered robustly folded β-peptoid oligomers. Contributions involving biological evaluation of peptidomimetic constructs containing β-peptoid residues, as mentioned above, which were investigated leading up to these recently reported high-resolution helical structures, will thus be discussed. On the basis of the work described in this Account, we envision that β-peptoids will find future utility as peptidomimetics for biomedical investigation containing both heterogeneous and homogeneous backbones. The recent demonstration of control over the secondary structure of a homogeneous β-peptoid backbone now enables structure-based design of scaffolds with predictable display of desired functionalities in three dimensions.

Original languageEnglish
JournalAccounts of Chemical Research
Volume48
Issue number10
Pages (from-to)2696-704
Number of pages9
ISSN0001-4842
DOIs
Publication statusPublished - 20 Oct 2015

    Research areas

  • Anti-Infective Agents, Cell-Penetrating Peptides, Histone Deacetylase Inhibitors, Peptidomimetics, Peptoids, Protein Folding, Protein Structure, Secondary

ID: 161860547